Regulatory Role of Glycerol in Candida albicans Biofilm Formation

نویسندگان

  • Jigar V. Desai
  • Vincent M. Bruno
  • Shantanu Ganguly
  • Ronald J. Stamper
  • Kaitlin F. Mitchell
  • Norma Solis
  • Elizabeth M. Hill
  • Wenjie Xu
  • Scott G. Filler
  • David R. Andes
  • Saranna Fanning
  • Frederick Lanni
  • Aaron P. Mitchell
چکیده

UNLABELLED Biofilm formation by Candida albicans on medically implanted devices poses a significant clinical challenge. Here, we compared biofilm-associated gene expression in two clinical C. albicans isolates, SC5314 and WO-1, to identify shared gene regulatory responses that may be functionally relevant. Among the 62 genes most highly expressed in biofilms relative to planktonic (suspension-grown) cells, we were able to recover insertion mutations in 25 genes. Twenty mutants had altered biofilm-related properties, including cell substrate adherence, cell-cell signaling, and azole susceptibility. We focused on one of the most highly upregulated genes in our biofilm proles, RHR2, which specifies the glycerol biosynthetic enzyme glycerol-3-phosphatase. Glycerol is 5-fold-more abundant in biofilm cells than in planktonic cells, and an rhr2Δ/Δ strain accumulates 2-fold-less biofilm glycerol than does the wild type. Under in vitro conditions, the rhr2Δ/Δ mutant has reduced biofilm biomass and reduced adherence to silicone. The rhr2Δ/Δ mutant is also severely defective in biofilm formation in vivo in a rat catheter infection model. Expression profiling indicates that the rhr2Δ/Δ mutant has reduced expression of cell surface adhesin genes ALS1, ALS3, and HWP1, as well as many other biofilm-upregulated genes. Reduced adhesin expression may be the cause of the rhr2Δ/Δ mutant biofilm defect, because overexpression of ALS1, ALS3, or HWP1 restores biofilm formation ability to the mutant in vitro and in vivo. Our findings indicate that internal glycerol has a regulatory role in biofilm gene expression and that adhesin genes are among the main functional Rhr2-regulated genes. IMPORTANCE Candida albicans is a major fungal pathogen, and infection can arise from the therapeutically intractable biofilms that it forms on medically implanted devices. It stands to reason that genes whose expression is induced during biofilm growth will function in the process, and our analysis of 25 such genes confirms that expectation. One gene is involved in synthesis of glycerol, a small metabolite that we find is abundant in biofilm cells. The impact of glycerol on biofilm formation is regulatory, not solely metabolic, because it is required for expression of numerous biofilm-associated genes. Restoration of expression of three of these genes that specify cell surface adhesins enables the glycerol-synthetic mutant to create a biofilm. Our findings emphasize the significance of metabolic pathways as therapeutic targets, because their disruption can have both physiological and regulatory consequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Effect of Fluconazole Combined with Amphotericin B on Fluconazole-Resistant Candida albicans Biofilm Formation

 Background & Objective:  The incidence of biofilm-related infections caused by Candida albicans has increased dramatically. C. albicans biofilm-related infections are more resistant to antifungal medications. This work was an attempt to examine inhibitory effects of fluconazole in combination with amphotericin B on fluconazole-resistant C. albicans biofilm.  Materials & Methods:  Fluconazole-...

متن کامل

Investigation the expression Candida albicans EFG1 gene in Vaginal Candidiasis and biofilm formation

Candida albicans has the ability to change between yeast and hyphal cells and is known to be a virulence property. Efg1gene of C.albicans is as a main transcription factor that plays pivotal roles in biofilm formation The aim of the current study is to investigate the presence of Efg1 gene in Candida albicans isolates from women with vaginal candidiasis and its impact on biofilm formation.We us...

متن کامل

Coordination of Candida albicans Invasion and Infection Functions by Phosphoglycerol Phosphatase Rhr2

The Candida albicans RHR2 gene, which specifies a glycerol biosynthetic enzyme, is required for biofilm formation in vitro and in vivo. Prior studies indicate that RHR2 is ultimately required for expression of adhesin genes, such as ALS1. In fact, RHR2 is unnecessary for biofilm formation when ALS1 is overexpressed from an RHR2-independent promoter. Here, we describe two additional biological p...

متن کامل

Candida albicans Biofilms: More Than Filamentation

Candida albicans is the fungal species most commonly associated with biofilm formation in immunosuppressed patients. Recent work offers a fresh new look at the role of filamentation in C. albicans biofilm formation, and describes the application of a powerful tool for the molecular dissection of these important developmental processes.

متن کامل

Effect of 900 MHz microwave radiation on alpha-int1 gene expression, proliferation and adherence of Candida Albicans

To date, registered users of mobile phone communication network exceeded from total numbers of the world population, while a little knowledge of the biological effects of, 900-1800 MHz microwave radiation, originating from the handsets or the base transceiver stations, have been released. The current study was designed for evaluation of 900-MHz radiation effects on Candida albicans proliferatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013